Smithsonian Marine Station at Fort Pierce

Website Search Box

Advanced Search


Ircinia strobilina from Sweetings Cay, Bahamas. Photo by S Zea, courtesy of Sponge Guide.

Ircinia strobilina from Bonaire, Netherlands Antilles. Photo by J Pawlik, courtesy of Sponge Guide.

Species Name: Ircinia strobilina Lamarck, 1816
Common Name: Bumpy Ball Sponge
Cake Sponge
Pillow Stinking Sponge
Synonymy: Dysidicinia longispina Duchassaing & Michelotti, 1864
Filifera verrucosa Lieberkühn, 1859
Hircinia acuta Duchassaing & Michelotti, 1864
Hircinia acuta v. filamenta Hyatt, 1877
H. acuta v. longispina Duchassaing & Michelotti, 1864
Hircinia acuta v. nigra Hyatt, 1877
Hircinia strobilina Lamarck, 1814
Ircinia acuta Duchassaing & Michelotti, 1864
I. acuta v. longispina Duchassaing & Michelotti, 1864
Ircinia linguiformis Duchassaing & Michelotti, 1864
Ircinia longispina Duchassaing & Michelotti, 1864
Ircinia verrucosa Lieberkühn, 1869
Polytherses capitata Duchassaing & Michelotti, 1864
Polytherses cylindrica Duchassaing & Michelotti, 1864
Polytherses ignobilis Duchassaing & Michelotti, 1864
P. linguiformis Duchassaing & Michelotti, 1864
Polytherses longispina Duchassaing & Michelotti, 1864
Spongia strobilina Lamarck, 1816
  1. TAXONOMY

    Kingdom Phylum/Division Class: Order: Family: Genus:
    Animalia Porifera Demospongiae Dictyoceratida Irciniidae Ircinia

    Please refer to the accompanying glossary for definitions of the descriptive terms used in this report.

    Species Description

    The bumpy ball sponge, Ircinia strobilina is massive, often with stubby cylinders wider than high (Wiedenmayer 1977). Specimens growing in strong currents usually become elongate in a direction perpendicular to the current, with a longitudinal apical crest bearing the oscules. Most specimens are cake or pillow shaped, as the two common names indicate. Live individuals are grey to black externally, with drab yellow at the base and in the choanosome. Their consistency is tough and spongy. The surface is coarsely conulose. Thick, blunt conules 3-8 mm high and 3-8 mm apart are often tipped in white and connected by ridges, especially near the base where they are lower and farther apart (Wiedenmayer 1977, Gammill 1997). The oscules are 2-5 mm in diameter, scattered in groups on the top plane, and often very crowded.

    Potentially Misidentified Species

    The bumpy ball sponge resembles the starry stinker sponge, I. felix. Both species have similar ectosomes and choanosomes (Wiedenmayer 1977). However, the fibers and the meshwork in the choanosome of I. felix are coarser, and connective fibers are rare.

  2. HABITAT AND DISTRIBUTION

    Habitat & Regional Occurence

    I. strobilina occurs from 10 to 100 feet, mostly in inner-reef areas and in lagoons among beds of the turtle grass, Thalassia testudinum (Kaplan 1988). The geographic range of the bumpy ball sponge extends from Florida to the Bahamas and throughout the Caribbean to Brazil (Kaplan 1988, Gammill 1997). In the Bahamas, this species is found on rocky substrate, where it grows successfully on the bottoms of rocky reef channels in strong currents (Wiedenmayer 1977).

  3. LIFE HISTORY AND POPULATION BIOLOGY

    Size & Growth

    The diameter of I. strobilina ranges from 5 cm to over 1 m (Wiedenmayer 1977). Individuals tend to grow faster vertically than horizontally, with most growth occurring when the specimens are small (Hoppe 1988). Assuming constant growth rates, I. strobilina can show an annual increase in volume of approximately 11 %.

    Abundance

    The abundance of I. strobilina in the IRL is undocumented, but densities of up to 19.3 individuals per 100 m2 have been documented for populations in the Bahamas (Wiedenmayer 1977).

    Reproduction & Embryology

    Reproduction of the bumpy ball sponge in the IRL is undocumented. However, I. strobilina exhibits reproductive activity year round on the reefs of Curaçao (Hoppe 1988b). Spermatic cysts are produced to varying degrees throughout the year, while oocytes and larvae have been observed from September to April, for an annual breeding season of 8 months. The sponge is viviparous with separate sexes, although the possibility of protandry cannot be ruled out.

  4. PHYSICAL TOLERANCES

    No information is available at this time

  5. COMMUNITY ECOLOGY

    Predators

    The bumpy ball sponge has been found in the stomach of the queen angelfish, Holocanthus ciliaris (Randall & Hartman 1968), and it is likely consumed in at least small quantities by other predators as well. However, other studies have found that fishes that were force-fed I. strobilina exhibited paralysis and narcosis (Hoppe 1988a). I. strobilina and related species produce linear furanosesterterpene tetronic acids, which give the sponges a characteristic garlic odor, and may warn potential predators that the species is unpalatable and potentially toxic (Pawlik et al. 2002).

    Associated Species

    Like many other sponges, a variety of organisms can be found living in association with the bumpy ball sponge. The coral, Porites astreoides, and the sponge, Haliclona viridis, have been found along with I. strobilina (Wiedenmayer 1977). In Brazil, the tusked goby, Risor ruber, often lives beside or within the sponge (Rocha et al. 2000).

    Individuals are frequently overgrown by other species of encrusting, branching, tubular, and turbinate sponges in reef areas where vacant space is in short supply (Engel & Pawlik 2005).

  6. ADDITIONAL INFORMATION

    Economic Importance

    Like many other species of marine sponges, I. strobilina produces chemical metabolites that are isolated, identified and studied for potential antifouling and/or pharmaceutical uses (e.g. Epifanio et al. 1999).

  7. REFERENCES

    Engel S & JR Pawlik. 2005 Interactions among Florida sponges. I. Reef habitats. Mar. Ecol. Prog. Ser. 303: 133-144.

    Epifanio R de A, Gabriel R, Martins DL & G Muricy. 1999. The sesterterpene variabilin as a fish-predation deterrent in the western Atlantic sponge Ircinia strobilina. J. Chem. Ecol. 25: 2247-2254.

    Gammill ER. 1997. Identification of coral reef sponges. Providence Marine Publishing, Inc. Tampa, Florida. 117 pp.

    Hoppe WF. 1988a. Growth, regeneration and predation in three species of large coral reef sponges. Mar. Ecol. Prog. Ser. 50: 117-125.

    Hoppe WF. 1988b. Reproductive patterns in three species of large coral reef sponges. Coral Reefs 7: 45-50.

    Kaplan EH. 1988. A field guide to southeastern and Caribbean seashores: Cape Hatteras to the Gulf coast, Florida, and the Caribbean. Houghton Mifflin Co. Boston, MA. USA. 425 pp.

    Pawlik JR, McFall G & S Zea. 2002. Does the odor from sponges of the genus Ircinia protect them from fish predators? J. Chem. Ecol. 28: 1103-1115.

    Randall JE & WD Hartman. 1968. Sponge-feeding fishes of the West Indies. Mar. Biol. 1: 216-225.

    Rocha LA, Rosa IL & BM Feitoza. 2000. Sponge-dwelling fishes of northwestern Brazil. Environ. Biol. Fish. 59: 453-458.

    Wiedenmayer F. 1977. Shallow-water sponges of the western Bahamas. Birkhäuser Verlag. Basel, Switzerland. 287 pp.

Page by LH Sweat
For questions, comments or contributions, please contact us at:
irl_webmaster@si.edu
Page last updated: 28 December 2012

[ TOP ]